Rhodium-Catalyzed Annulation of Ynamides with Bifunctional Arylboron Reagents

ORGANIC LETTERS 2010 Vol. 12, No. 11 ²⁵⁵⁴-**²⁵⁵⁷**

Benoit Gourdet, Mairi E. Rudkin, and Hon Wai Lam*

School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K.

h.lam@ed.ac.uk

Received April 2, 2010

ABSTRACT

Annulation of ynamides with arylboronic acids or esters containing an electrophilic functional group at the *ortho***-position proceeds under the action of rhodium catalysis to generate 2-amidoindenols or 2-amidoindenes, usually with good regioselectivity.**

Ynamides^{1,2} have recently been demonstrated to be valuable substrates in carbometalation reactions³ with various organometallic reagents.4,5 We recently became interested in

10.1021/ol100769p 2010 American Chemical Society **Published on Web 05/06/2010**

rhodium-catalyzed⁶ ynamide carbometalations with organoboron reagents, and in particular, arylboron compounds **2** containing an electrophilic functional group at the *ortho*position to trap the alkenylrhodium intermediates **3** generated upon initial carborhodation of the ynamide **1** (Scheme 1).⁷

The annulation of *ortho*-functionalized arylboron reagents has previously been accomplished using alkynes⁸ and alkenes, $8d,e,9$ and these processes $10-12$ benefit from mild reaction conditions and broad tolerance of functional groups. To our knowledge, the annulation of ynamides in analogous reactions has not been described previously, and we viewed

⁽¹⁾ For general reviews of ynamide chemistry, see: (a) Evano, G.; Coste, A.; Jouvin, K. *Angew. Chem., Int. Ed.* **2010**, *49*, 2840–2859. (b) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 7575–7606. (c) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. *Synlett* **2003**, 1379–1390. (d) Katritzky, A. R.; Jiang, R.; Singh, S. K. *Heterocycles* **2004**, *63*, 1455–1475.

⁽²⁾ For recent, selected examples of ynamide chemistry, see: (a) Sato, A.; Yorimitsu, H.; Oshima, K. *Bull. Korean Chem. Soc.* **2010**, *31*, 570– 576. (b) DeKorver, K. A.; Hsung, R. P.; Lohse, A. G.; Zhang, Y. *Org. Lett.* **2010**, *12*, 1840–1843. (c) Li, H.; Hsung, R. P. *Org. Lett.* **2009**, *11*, 4462–4465. (d) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottländer, M.; Skrydstrup, T. *Org. Lett.* **2009**, *11*, 4208–4211. (e) Coste, A.; Ganesan, K.; Couty, F.; Evano, G. *Angew. Chem., Int. Ed.* **2009**, *48*, 4381–4385. (f) Oppenheimer, J.; Johnson, W. L.; Figueroa, R.; Hayashi, R.; Hsung, R. P. *Tetrahedron* **2009**, *65*, 5001–5012. (g) Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. *J. Org. Chem.* **2009**, *74*, 4630–4633. (h) Alayrac, C.; Schollmeyer, D.; Witulski, B. *Chem. Commun.* **2009**, 1464–1466. (i) Garcia, P.; Moulin, S.; Miclo, Y.; Leboeuf, D.; Gandon, V.; Aubert, C.; Malacria, M. Chem.-Eur. *J.* **2009**, *15*, 2129–2139. (j) Couty, S.; Meyer, C.; Cossy, J. *Tetrahedron* **2009**, *65*, 1809–1832. (k) Zhang, Y.; DeKorver, K. A.; Lohse, A. G.; Zhang, Y.-S.; Huang, J.; Hsung, R. P. *Org. Lett.* **2009**, *11*, 899–902. (l) Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T. *Org. Lett.* **2009**, *11*, 221–224.

⁽³⁾ For general reviews on carbometalation reactions, see: (a) Marek, I.; Chinkov, N.; Banon-Tenne, D. In *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; pp 395-478. (b) Marek, I.; Normant, J. F. In *Transition Metals for Organic Synthesis*; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; pp 514-522.

⁽⁴⁾ For carbocupration and copper-catalyzed carbomagnesiation of ynamides, see: (a) Chechik-Lankin, H.; Livshin, S.; Marek, I. *Synlett* **2005**, 2098–2010. (b) Prakash Das, J.; Chechik, H.; Marek, I. *Nature Chem.* **2009**, *1*, 128–132. (c) Yasui, H.; Yorimitsu, H.; Oshima, K. *Chem. Lett.* **2007**, *36*, 32–33. (d) Yasui, H.; Yorimitsu, H.; Oshima, K. *Bull. Chem. Soc. Jpn.* **2008**, *81*, 373–379.

⁽⁵⁾ For rhodium-catalyzed addition of organozinc reagents to ynamides, see: (a) Gourdet, B.; Lam, H. W. *J. Am. Chem. Soc.* **2009**, *131*, 3802– 3803. (b) Gourdet, B.; Rudkin, M. E.; Watts, C. A.; Lam, H. W. *J. Org. Chem.* **2009**, *74*, 7849–7858.

⁽⁶⁾ For a review of rhodium-catalyzed carbon-carbon bond-forming reactions of organometallic compounds, see: Fagnou, K.; Lautens, M. *Chem.*

*Re*V*.* **²⁰⁰³**, *¹⁰³*, 169–196. (7) The carbometalation of ynamides **¹** with arylboron reagents lacking an electrophilic functional group at the *ortho*-position will be the subject of a separate report from our laboratories.

Scheme 1. Proposed Rh-Catalyzed Annulation of Ynamides with Bifunctional Arylboron Reagents

the formation of 2-amidoindenes **4** in such a process to be attractive for a number of reasons. First, the indene ring system is present in biologically active compounds¹³ and functional materials.14 Second, it was of fundamental interest to ascertain whether the directing effect¹⁵ of the carbonyl or sulfonyl group of ynamides as proposed in previous ynamide carbometalations $4,5$ would also be operative here, to provide indenes with high regioselectivities. Third, the enamide moiety present within the products **4** could potentially serve as a useful handle for further manipulations.¹⁶ In this Letter, the successful execution of this strategy is reported.

(9) (a) Lautens, M.; Mancuso, J. *Org. Lett.* **2002**, *4*, 2105–2108. (b) Lautens, M.; Mancuso, J. *J. Org. Chem.* **2004**, *69*, 3478–3487. (c) Nishimura, T.; Yasuhara, Y.; Hayashi, T. *J. Am. Chem. Soc.* **2007**, *129*, 7506–7507. (d) Nishimura, T.; Yasuhara, Y.; Nagaosa, M.; Hayashi, T. *Tetrahedron: Asymmetry* **2008**, *19*, 1778–1783. (e) Tseng, N.-W.; Lautens, M. *J. Org. Chem.* **2009**, *74*, 1809–1811.

(10) For related reactions involving dienylboronate esters, see: (a) Tseng, N.-W.; Mancuso, J.; Lautens, M. *J. Am. Chem. Soc.* **2006**, *128*, 5338–5339. (b) Tseng, N.-W.; Lautens, M. *J. Org. Chem.* **2009**, *74*, 2521–2526.

(11) For reviews of rhodium-catalyzed domino reactions using organoboron reagents, see: (a) Miura, T.; Murakami, M. *Chem. Commun.* **2007**, 217–224. (b) Youn, S. W. *Eur. J. Org. Chem.* **2009**, 2597–2605.

(12) For related reactions involving *o*-haloaromatic aldehydes and ketones, see: (a) Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. *J. Am. Chem. Soc.* **1999**, *121*, 3545–3546. (b) Gevorgyan, V.; Quan, L. G.; Yamamoto, Y. *Tetrahedron Lett.* **1999**, *40*, 4089–4092. (c) Rayabarapu, D. K.; Cheng, C.-H. *Chem. Commun.* **2002**, 942–943. (d) Rayabarapu, D. K.; Yang, C.- H.; Cheng, C.-H. *J. Org. Chem.* **2003**, *68*, 6726–6731. (e) Chang, K.-J.; Rayabarapu, D. K.; Cheng, C.-H. *J. Org. Chem.* **2004**, *69*, 4781–4787. (f) Zhang, X.; Larock, R. C. *Org. Lett.* **2005**, *7*, 3973–3976.

(13) For examples, see: (a) Ishiguro, Y.; Okamoto, K.; Ojima, F.; Sonoda, Y. *Chem. Lett.* **1993**, *22*, 1139–1140. (b) Karaguni, I.-M.; Glusenkamp, K.-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Mo¨ro¨y, T.; Mu¨ller, O. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 709–713. (c) Müller, O.; Gourzoulidou, E.; Carpintero, M.; Karaguni, I.-M.; Langerak, A.; Herrmann, C.; Möröy, T.; Klein-Hitpa β , L.; Waldmann, H. Angew. *Chem., Int. Ed.* **2004**, *43*, 450–454.

(14) For examples, see: (a) Barbera´, J.; Rakitin, O. A.; Ros, M. B. *Angew. Chem., Int. Ed.* **1998**, *37*, 296–299. (b) Yang, J.; Lakshmikantham, M. V.; Cava, M. P. *J. Org. Chem.* **2000**, *65*, 6739–6742.

(15) For a review of substrate-directable chemical reactions, see: Hoveyda, A. H.; Evans, D. A.; Fu, G. C. *Chem. Re*V*.* **¹⁹⁹³**, *⁹³*, 1307– 1370.

Because of their efficacy in previous rhodium-catalyzed carbozincations,⁵ ynamides $1a-1f$ containing oxazolidin-2one or imidazolin-2-one rings were chosen for this study (Figure 1). Acyclic ynamide **5** was also studied for com-

Figure 1. Ynamides employed in this study.

parison purposes. Regarding the bifunctional arylboron reagent, commercially available 2-acylphenylboronic acids **6a** and **6b** were examined first (Figure 2). An initial survey

Figure 2. Rhodium-catalyzed annulation of ynamides with 2-acylphenylboronic acids. $rr =$ Regioisomeric ratio as determined by ¹H NMR analysis of the unpurified reaction mixtures. Unless stated otherwise, cited yields are of isolated major regioisomers. Notes: (a) Isolated as a 9:1 inseparable mixture of regioisomers. (b) Products were accompanied by ca. $5-7%$ of unidentified inseparable impurities.

of reaction conditions revealed that reaction of ynamides **1** with 2-formylphenylboronic acid (**6a**) in the presence of

⁽⁸⁾ Using rhodium catalysis: (a) Lautens, M.; Marquardt, T. *J. Org. Chem.* **2004**, *69*, 4607–4614. (b) Shintani, R.; Okamoto, K.; Hayashi, T. *Chem. Lett.* **2005**, *34*, 1294–1295. (c) Matsuda, T.; Makano, M.; Murakami, M. *Chem. Lett.* **2005**, *34*, 1416–1417. (d) Miura, T.; Murakami, M. *Org. Lett.* **2005**, *7*, 3339–3341. (e) Harada, Y.; Nakanishi, J.; Fujihara, H.; Tobisu, M.; Fukumoto, Y.; Chatani, N. *J. Am. Chem. Soc.* **2007**, *129*, 5766–5771. (f) Miyamoto, M.; Harada, Y.; Tobisu, M.; Chatani, N. *Org. Lett.* **2008**, *10*, 2975–2978. (g) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. *J. Am. Chem. Soc.* **2009**, *131*, 7506–7507. Using palladium catalysis: (h) Yang, M.; Zhang, X.; Lu, X. *Org. Lett.* **2007**, *9*, 5131–5133. (i) Liu, G.; Lu, X. *Ad*V*. Synth. Catal.* **²⁰⁰⁷**, *³⁴⁹*, 2247–2252. (j) Tsukamoto, H.; Kondo, Y. *Org. Lett.* **2007**, *9*, 4227–4230. (k) Zhou, F.; Yang, M.; Lu, X. *Org. Lett.* **2009**, *11*, 1405–1408.

⁽¹⁶⁾ For reviews on enamides, see: (a) Carbery, D. R. *Org. Biomol. Chem.* **2008**, *6*, 3455–3460. (b) Matsubara, R.; Kobayashi, S. *Acc. Chem.* Res. **2008**, 41, 292–301. (c) Larock, R. C. *Comprehensive Organic* Transformations: A Guide to Functional Group Preparations; Wiley-VCH: New York, 1999. (d) Tracey, M. R.; Hsung, R. P.; Antoline, J.; Kurtz, K. C. M.; Shen, L.; Slafer, B. W.; Zhang, Y. In *Science of Synthesis, Houben-Weyl Methods of Molecular Transformations*; Weinreb, S. M., Ed.; Georg Thieme Verlag KG: New York, 1999; Chapter 21.4.

 $[Rh(cod)Cl]_2$ (4 mol %) and KOH (0.3 equiv) in 20:1 THF/ H2O was successful to provide a range of 2-amidoindenols **7a-7e** with generally high regioselectivities¹⁷ and good yields. Aliphatic or aromatic substituents on the ynamide were tolerated. 2-Acetylphenylboronic acid (**6b**) was also a competent reaction partner under these conditions, providing tertiary-alcohol-containing 2-amidoindenols **7f**-**7i** with high regioselectivities. Perhaps unsurprisingly, however, the lower electrophilicity of the ketone in **6b** compared with the aldehyde in **6a** was manifested in decreased reaction rates¹⁸ and isolated yields. In addition, small quantities of unidentified side products were observed in these cases. Consistent with previous reports of rhodium-catalyzed ynamide carbometalations,5 annulation of acyclic ynamide **5** with **6a** proceeded successfully but with low regioselectivity.¹⁹

Next, the reactions of ynamides **1** with 2-alkenylphenylboronic esters **8** were evaluated under similar reaction conditions, and 2-amidoindenes **9** were formed in generally good yields (Figure 3). Arylboron reagents containing α, β unsaturated aldehydes (**8a**), ketones (**8b** and **8c**), or esters (8d) were effective coupling partners, whereas α , β -unsaturated nitrile **8e** did not lead to any indene, even after prolonged heating at 50 °C. The lack of reactivity of **8e** has been documented previously.²⁰ With ynamides **1a**-**1d** containing aliphatic substituents, the regioselectivities were high (products **9a**-**9c**, **9e**, and **9g**), but phenyl-substituted ynamides **1e** and **1f** resulted in lower selectivities (products **9d**, **9fa**, and **9h**).²¹ Once again, acyclic ynamide **5** was not an effective substrate with boronic esters **8**, resulting in inseparable mixtures of indene regioisomers with low selectivities.²² Interestingly, reaction of ynamide **1a** with dienone-substituted phenylboronic ester **7f** provided a complex mixture from which 2-amidoindene **10** containing a β , γ unsaturated ketone was isolated in 47% yield (eq 1).

Further reactions of the 2-amidoindene products are illustrated in eqs 2 and 3. When treated with Et_3N , 2-ami-

Figure 3. Rhodium-catalyzed annulation of ynamides with 2-alkenylphenylboronic esters. $rr =$ Regioisomeric ratio as determined by ¹H NMR analysis of the unpurified reaction mixtures. Unless stated otherwise, cited yields are of isolated major regioisomers. Notes: (a) Product was isolated as an 11:1 inseparable mixture of regioisomers. (b) Product was isolated as a >10:1 inseparable mixture of regioisomers. (c) The minor regioisomer **9fb** (not shown) was isolated in 28% yield.

doindenol **7e** underwent a facile formal 1,3-hydrogen rearrangement reaction²³ to provide indanone 11 as a 4:1 inseparable mixture of diastereomers in 77% yield (eq 2).²⁴

decomposition started to occur.

⁽¹⁷⁾ The regioselectivity of annulation of ynamide **1c** with arylboronic acid **6a** was established through X-ray crystallography of a derivative of the resulting indene **7b**. See Supporting Information for details.

⁽¹⁸⁾ Reactions employing **6a** were complete within 3 h, whereas reactions employing **6b** required overnight stirring for completion.

⁽¹⁹⁾ This experiment produced a 1.7:1 inseparable mixture of indenols **7ja** and **7jb**, accompanied by small quantities of unidentified impurities. See Supporting Information for details.

⁽²⁰⁾ Catalyst deactivation through coordination of multiple nitrile groups to rhodium was cited as a possible explanation for the unreactive nature of **8e**. See ref 9b.

⁽²¹⁾ Single X-ray crystallography of indene **9h** allowed confirmation of the regiochemical outcome.

⁽²²⁾ For example, annulation of **5** with **8d** provided a 2:1 inseparable mixture of indenes **9ia** and **9ib** in 95% yield. See Supporting Information for details.

⁽²³⁾ This reaction most likely proceeds via a series of base-induced [1,5] hydrogen shifts; see: (a) Clark, W. M.; Tickner-Eldridge, A. M.; Huang, G. K.; Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.; Baine, N. H. *J. Am. Chem. Soc.* **1998**, *120*, 4550–4551. See also: (b) Hedberg, C.; Andersson, P. G. *Ad*V*. Synth. Catal.* **²⁰⁰⁵**, *³⁴⁷*, 662–666. (c) Gevorgyan, V.; Quan, L. G.; Yamamoto, Y. *Tetrahedron Lett.* **1999**, *40*, 4089–4092. (24) Stirring indanone 11 (4:1 dr) in CD_2Cl_2 with DBU (1.0 equiv) increased the diastereomeric ratio to 7:1 after 5 h, after which time

Hydrogenation of 2-amidoindene **9c** produced indane **12** as a 3:1 inseparable mixture of diastereomers with concomitant deprotection of the silyl group (eq 3).²⁵

In summary, rhodium-catalyzed annulation reactions of ynamides with arylboron compounds containing an aldehyde, a ketone, or an electron-deficient alkene at the *ortho*-position have been developed. The reactions proceed under mild conditions to provide a range of functionalized 2-amidoindenes with generally good levels of regioselectivity. The development of enantioselective variants of these reactions will be the subject of future reports.

Acknowledgment. This work was supported by the European Commission (Project No. MEST-CT-2005-020744), GlaxoSmithKline, the ESPRC, and the University of Edinburgh. We thank Dr. Fraser J. White at the School of Chemistry, University of Edinburgh for assistance with X-ray crystallography. We also thank the EPSRC National Mass Spectrometry Service Centre at the University of Wales, Swansea, for providing high resolution mass spectra.

Supporting Information Available: Experimental procedures, full spectroscopic data for all new compounds, and crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100769P

⁽²⁵⁾ The diastereochemical outcome of this reaction was established through NOESY¹H NMR spectra. See Supporting Information for details.